ENVIRONMENTAL TEST EVALUATION

OF TEN TYPES OF MODIFIED APOLLO STANDARD INITIATORS

MSC-IN-66-EP-4

PREP	ARED	BY:
rnen	منتنابع	

Robert K. Williams

Robert K. Williams

Test Engineer, Pyrotechnics Test Section

APPROVED BY:

L. I Wind

L. I. Wind, Head Pyrotechnics Test Section

APPROVED BY:

Jesse O. Jones, Chief Thermochemical Test Branch

PPROVED BY:

Joseph G. Thibodaux, Jr., Chief Propulsion and Power Division

NATIONAL AFRONAUTICS AND SPACE ADMINISTRATION

MANNED SPACECRAFT CENTER

HOUSTON, TEXAS
APRIL 13, 1966

(ACC)

FACILITY FORM 602

TABLE OF CONTENTS

PAG	E
Introduction	
Test Article Description	
Test Equipment Description	
Test Procedure 4	
Results and Discussion 6	
Conclusions	
Figures Figure 1 - Construction of the Apollo Standard Initiator	
Figure 2 - PIP Configurations	
Appendix I	
Tabulated Data	

INTRODUCTION

The purpose of this series of tests was to determine the basic characteristics of several types of modified Apollo Standard Initiators, designated as Product Improvement Program (PIP) initiators, including the effects of vibration, thermal shock, electrostatic shock, and high and low temperature on electrical and firing characteristics.

Each PIP initiator represented a single change in the normal construction of the Apollo Standard Initiator (ASI). Several of the changes represented "mistakes" which could be committed during the fabrication of the ASI. The knowledge of the electrical and firing characteristics of these and the other PIP initiators evaluated during this test program should be valuable in maintaining the quality control of the current ASI and for designing future improvements on its basic configuration.

The test program was conducted by the Pyrotechnics Test Section of the Thermochemical Test Branch at the Pyrotechnics Test Facility, Building 352, in accordance with a request from the Auxiliary Propulsion and Pyrotechnics Branch, Propulsion and Power Division. The test was conducted during the period from December 14, 1965 to February 10, 1966.

TEST ARTICLE DESCRIPTION

The Apollo Standard Initiator (ASI), North American Aviation Part No. ME 453-0009, is a standardized "hot-wire" initiator of minimal size and weight containing two independent bridge wire circuits (4 pins) which will withstand passage of 1 amp or 1 watt through each bridgewire (simultaneously) and an electrostatic discharge of 9000 volts from a 500 picofarad (pf) capacitor from the pins (shorted together) to the case. The Apollo Standard Initiator is used as an independent pressure cartridge to function small mechanical devices, such as explosive valves, and also as a basic module for higher level hermetically sealed pyrotechnic assemblies which perform a variety of functions. The component parts of the Apollo Standard Initiator are shown in Figure 1.

The Product Improvement Program (PIP) initiators evaluated during this test program were special non-flight articles with the same basic configuration as the ASI but with certain built-in defects or changes. Ten types of PIP initiators were tested, each with one (single) change from the basic ASI. Figure 2 outlines and illustrates the changes to the basic ASI. A summary description of each modification is outlined below:

- <u>PIP 1</u> Tophet A, a metal similar to <u>Nichrome</u>, is substituted for the standard bridgewire material, <u>Nilstain</u>.
- $\underline{PIP-2}$ An isomica disk is placed between the ignition charge and the bridgewire.
- PIP 3 A third bridgewire is placed between pins B and C.
- <u>PIP 4</u> The bridgewire between pins A and B is bent slightly toward the bridgewire between pins C and D. The bend adds approximately 25% to the normal length of the bridgewire.
- $\underline{PIP} 5$ Graphite, which represents approximately 1% by weight of the initiator mix of the normal ASI, is eliminated.
- $\underline{PIP-6}$ The initiation charge is compacted to 5,000 psi as compared to 10,000 psi in the normal ASI.
- PIP 7 The ceramic header is cracked between bridgewires A-B and C-D.
- $\underline{PIP-8}$ Bridgewire A-B only is present; pins C and D are covered with insulation.
- PIP 9 No isomica disks are placed in the initiator.
- <u>PIP 10</u> Viton B, a fluoroelastomer which represents approximately 5% by weight of the pyrotechnic mix of the normal ASI, is eliminated.

These initiators were manufactured by Space Ordnance Systems, El Segundo, California, for the sole purpose of product improvement testing and were carefully identified as non-flight hardware.

TEST EQUIPMENT DESCRIPTION

The major environmental equipment and measuring instruments used in this program and a brief description of each are listed below:

Universal Electroexplosive Initiator Test Set, FILUP-2 - This is a custom-built system of instrumentation for evaluation of electroexplosive devices. It incorporates in one integrated system the capabilities for evaluation testing of all types of electroexplosive initiators including; hot wire bridge types, carbon bridge, exploding bridgewires, conductive mix, and spark gap. Specifically, the test set incorporates the features of three separate systems for the evaluation of the performance of electroexplosive initiators. These systems are:

- a. Universal Pulser This system provides constant current and constant voltage pulses ranging in amplitude from milliamperes to tens of amperes and pulse times ranging from one microsecond to hours.
- b. Exploding Bridgewire Test Set Using voltages of up to 6,000 volts and capacitors of 1, 2 and 10 microfarads this test set provides a wide range of capability in the testing of exploding bridgewires.
- c. Capacitor Discharge Test Set Using capacitors from 0.001 to 10 microfarads, this system provides the capability for capacitor discharge testing of conventional initiators, carbon bridge, hot wire bridge, conductive mix and spark gap types.

General Radio Model 1862-C Megohmeter - This is a standard megohmeter with selectable test voltages of 100 and 500 volts. The usable range of the instrument is from 0.5 to 2,000,000 megohms.

Static Discharge Tester - This instrument charges a capacitor to a set voltage and subsequently discharges into the test article through a vacuum relay. This unit can charge the capacitor to any voltage up to 30,000 volts. A 500 pf capacitor was used in these tests.

Boonton Model 75A Capacitance Bridge - With a built-in 1 megacycle (Mc) test oscillator this unit is capable of measuring capacitances from 0,0002 to 1000 pf.

Missimers Model FT1.5 Bench Type Temperature Test Chamber - This chamber is a small, mechanically refrigerated temperature chamber providing a temperature range of minus 100 to plus 350 degrees F.

MB Electronics Vibration System - This system is capable of sine of random vibration modes with a frequency range of 5 to 3000 cycles per second and a transmitted force of 4500 pounds.

Closed Bomb, Transducer, Charge Amplifier - Pressures in the 10 cc closed bomb manufactured by Space Ordnance Systems were measured using a Kistler Model 617L piezoelectric transducer and Kistler Model 568 Charge Amplifier.

Other standard electronic laboratory equipment such as voltmeters and ohmmeters were used as required in setting up and performing the various tests.

TEST PROCEDURE

The first step in the program was to collect baseline data on each initiator to provide information from which the effects of the various environments on the PIP units could be evaluated. The electrical parameters listed below were measured and recorded for each initiator.

- a. Bridgewire resistance (AB.CD)
- b. Insulation resistance, pins to case @ 500 volts DC.
- c. Interbridge resistance, @ 12 volts DC.
- d. Capacitance, pins to case.
- e. Interbridge capacitance.

Electrical parameters (c) and (e), interbridge reistance and interbridge capacitance were omitted for all Type 3 PIP's since these PIP units incorporated the third bridgewire between pins B and C and would fire if the voltage necessary to measure these parameters was applied across the third bridgewire.

The electrical parameter measurements were made on twenty initiators from each of the ten PIP types. The 200 initiators were then divided into three groups, A, B and C. Group A included five (5) initiators of each PIP type, Group B included ten (10) initiators of each PIP type, and Group C included five (5) initiators of each PIP type.

Each initiator taken one at a time from Group A was subjected to an electrostatic discharge (between the pins shorted together and the case) from a 500 picofarad capacitor charged to 1000 volts. After the initial discharge, the discharge voltage was increased in steps of 1000 volts until the initiator fired or until the maximum voltage capability of the test equipment was attained (30,000 volts). After each pulse, the initiator's interbridge resistance and interbridge capacitance were measured and recorded for comparison with the baseline electrical data.

With the exception of the Type 3 PIP's, the Group A units which did not fire when subjected to the electrostatic discharge were then tested to determine the minimum voltage, applied bridgewire to bridgewire, necessary to cause ignition. Each initiator was subjected to 10 volts, applied bridgewire to bridgewire, for a period of 5 seconds. The voltage was then increased in steps of 10 volts until the initiator fired.

Within five minutes after firing an initiator in any of the tests, the leakage current was measured and recorded with 28 volts DC applied between the points listed below:

- a. Pin A to Pin B
- b. Pin C to Pin D
- c. Shorted pins A-B to shorted pins C-D.
- d. All pins shorted together and the case.

The initiators of Group B were subjected to random vibration in each of their three orthogonal axes at levels of 0.01 $\rm g^2/cps$ at 10 cps with a 6 db/octave increase to 0.8 $\rm g^2/cps$ at 100 cps, then constant at 0.8 $\rm g^2/cps$ from 100 cps to 400 cps and a 3 db/octave decrease from 400 cps to 0.16 $\rm g^2/cps$ at 2000 cps.

The vibration was applied for a period of five minutes per axis. Within 30 minutes after the completion of the vibration test, the interbridge resistance and interbridge capacitance of each initiator of Group B, with the exception of Type 3 PIP's were measured and recorded for comparison with the baseline electrical data.

Following these measurements, each initiator of Group B was subjected to a current of one ampere through each of its bridgewires for a period of five minutes. For all PIP types other than type 3 (three bridgewires) and 8 (one bridgewire) the current was applied to both bridgewires simultaneously. Type 3 initiators were tested by applying the one ampere current through bridgewires A-B and C-D simultaneously for five minutes and then the current was applied through bridgewire B-C separately for five minutes.

Group B was then divided into subgroups B_1 and B_2 . Each of these subgroups was composed of five initiators of each PIP type for a total of 50 initiators per subgroup.

Each initiator of subgroup B₁ was then fired in a 10 cc closed bomb by applying a current of five amperes to only one bridgewire of each initiator. The initiators, the 10 cc closed bombs, and the pressure measuring transducers were stabilized before firing at a temperature of minus 300 ±20 degrees F. Data was recorded during each firing from which the time to fire, time to peak pressure, and peak pressure was measured.

Each initiator of subgroup B_2 was then fired in a 10 cc closed bomb by applying a current of 3.5 amperes to one bridgewire of each initiator. The initiators, the 10 cc closed bombs, and the pressure transducers were stabilized before firing at a temperature of plus 300 \pm 5 degrees F. Data was recorded during each firing from which the time to fire, time to peak pressure and peak pressure was measured.

Each initiator of Group C was subjected to ten temperature cycles. Each cycle was conducted with the initiator temperature stabilized at minus 300 ±20 degrees F for one hour followed by one-half hour at plus 300±5 degrees F. The time of transfer between each temperature chamber did not exceed one minute. At the end of the tenth cycle the initiators were allowed to return to ambient temperature and then, with the exception of the Type 3 PIP's, interbridge resistances and interbridge capacitances were measured and recorded for comparison with the baseline data.

Each initiator of Group C was then fired in a 10 cc closed bomb by applying a current of 3.5 amperes to one bridgewire of each initiator. Data was recorded during each firing from which the time to fire, time to peak pressure, and peak pressure was measured.

RESULTS AND DISCUSSION

Baseline Parameters

The tabulated initial electrical parameters from groups A, B, and C (see tables 1, 2, and 3) show no abnormalities, other than those expected, from the electrical parameters of the Apollo Standard Initiator. The expected deviations appeared in the following PIP types of groups A, B, and C.

- a. PIP 3 The third bridgewire between pins B and C showed a resistance comparable to AB and CD bridgewires. No attempt was made to measure the interbridge resistance or interbridge capacitance on the Type 3 PIP initiator because the voltage necessary to make the measurement, when placed across this third bridgewire, would fire the initiator.
- b. PIP 4 Due to the increased length of bridgewire AB, the AB bridgewire resistance was approximately 30% higher than normal.
 - c. PIP 8 In all cases bridgewire CD was not present.

Electrostatic Discharge

When exposed to the electrostatic discharge test, three PIP'types appeared to be especially sensitive, (see table 1). Four of the five initiators of PIP Types 1, 7, and 9 fired when exposed to repeated static discharges.

PIP Type 9 appear to be the most sensitive. This is probably due to the absence of the isomica disks which, with the ceramic header, insulate the ignition charge from the electrically conductive main charge and the case (see figure 1). The absence of these disks leaves an electrically conductive path between the pins and bridgewire, and the case. Hence, any static discharge applied between the initiator's case and pins conducts through the mix.

PIP Type 7 is also sensitive to the static discharge because the static charge has a discharge path from the pins, through the mix, through the cracked header and back to the case.

PIP Type 1, with the Tophet A bridgewire, was also found to be sensitive to static discharge. No apparent reason is evident as to why this initiator should be especially sensitive to the static discharge since both the isomica disks and the ceramic header are in place and undamaged. It is possible that the change in bridgewire size could be the cause of the increased sensitivity.

· For all PIP types, with each repetition of the static voltage discharge, the initiators' interbridge resistances decreased and, in general, the interbridge capacitances increased. The following is an example (PIP Type 1, S/N 11):

Voltage Applied	Interbridge Resistance	Interbridge Capacitance
baseline	Above 1.5 K meg	2.249 pf
1000	Above 1.5 K meg	1.700 pf
2000	Above 1.5 K meg	2.884 pf
3000	15 meg	2.283 pf
4000	2.15 meg	3.456 pf
5000	50 K	3.772 pf
6000	16.6 K	4.533 pf
7000	6 K	4.325 pf
8000	6 K	3.960 pf
9000	3 K	4.063 pf
10000	2.5 K	4.088 pf
11000	2.5 K	4.386 pf
12000	2.14 K	4.380 pf
13000	2 K	4.348\pf
14000	Unit fired	•

It appears that the electrostatic discharge generates a field which affects the initiator mix, causing it to become more conductive.

Minimum Ignition Voltage (Bridgewire to bridgewire)

In the determination of the minimum bridgewire to bridgewire ignition voltage the only abnormalities occurred with the PIP Type 2 and Type 8 initiators (see table 3). Neither type initiator fired with up to 1500 volts applied. bridgewire to bridgewire. As expected, the Type 2 initiators would not fire in this mode because the isomica disk over the bridgewires separated the ignition mix from the path of the leakage current between the two bridgewires. Also, as expected, the Type 8 PIP's did not fire because the CD bridgewire was purposely absent and there was insulation over the C and D pins.

The other PIP initiators fired at approximately 135 volts. This figure may be somewhat deceptive in that it has been found from past programs that the ASI becomes more sensitive to voltages applied, bridgewire to bridgewire, with each successive application, i.e., the ASI will withstand a much higher voltage application if only one pulse is applied.

<u>Vibration</u> (Mission Maximum Level)

Previous test programs conducted on Apollo initiators have shown that vibration at the mission maximum level causes the initiators' interbridge resistances to increase and interbridge capacitances to decrease. The mission maximum vibration level applied to the PIP units in this test program also caused a

50 to 67% decrease in the interbridge capacitance of every type of PIP initiator. In every case the PIPs' interbridge resistances remained above 1.5 K megohms - (see table 2).

One amp - No Fire Test

None of the changes made to the initiators for this PIP test program made them more than normally sensitive to the one ampere no fire test. None of the units fired or showed appreciable signs of degradation as a result of one ampere of current through both bridgewires for five minutes.

Temperature Cycling

After temperature cycling every PIP unit showed a decrease of about 20 to 50% of the initial interbridge capacitance. The interbridge resistance in every case remained above 1.5 K megohms.

Again, as has been encountered in previous temperature cycling tests on Apollo initiators, the end closures on a number of the units bulged quite noticeably. This bulging is apparently due to a build-up of internal pressure. PIP Types 2, 9, and 10 appeared to be especially affected by the temperature cycling. Four of the five units of each of these three type initiators showed expanded end closures. One unit of the Type 10 vinitiators, which showed the greatest end closure expansion, was carefully cut open on a lathe in an effort to determine if any visual changes had occurred in the mix to cause the bulging. No visual changes were noted.

Type 3 and 7 PIP initiators showed no bulging of the end closures. PIP Type 7, with the cracked header, would necessarily not allow any buildup of internal pressure. No apparent reason has been determined for the lack of bulging in the PIP Type 3 initiator.

Closed Bomb Firing

There appears to be little difference between the peak pressures produced by the PIP units fired at plus 300 degrees F, those fired at minus 300 degrees F, and those fired at ambient temperature. However, there was a large number of units which produced peak pressures outside the range of the lot acceptance specifications (650 \pm 125 psi). Of the 149 initiators fired in the closed bomb, 26 did not meet the pressure specifications for lot acceptance.

None of the PIP initiators showed any outstanding increase or decrease from normal peak pressure output with the exception of the Type 2 units. None of the Type 2 units fired in these tests due to the isomica disks separating the bridgewires from the ignition mix.

The time to fire data shows only one abnormality. In almost every case the PIP Type 1 units took from 2 to 3 times longer to fire than the other units (see tables 2 and 3). This is probably caused by the Tophet A bridgewire. Tophet A has a higher resistivity than the normal bridgewire material and, to keep the bridgewire resistance close to one ohm, the Tophet A bridgewire must have a greater diameter. Therefore, the Tophet A bridgewire has a larger

surface area from which to conduct the heat generated by the firing current and thus does not heat to the ignition temperature of the mix as rapidly as the normal bridgewire.

CONCLUSIONS

- 1. All PIP initiators with the exception of Type 2 are electrostatic sensitive. Initiator Types 1, 7, and 9 appear to be especially sensitive to electrostatic discharge.
- 2. None of the PIP initiators, with the exception of Types 2 and 8, are more or less sensitive to voltages applied bridgewire to bridgewire than the Apollo Standard Initiator.
- 3. Vibration at the mission maximum level does not adversely affect the PIP initiators.
- 4. None of the PIP initiators are more than normally sensitive to the one amp-no fire test.
- 5. During temperature cycling all PIP initiators, with the exception of Types 3 and 7, appear to develop internal pressures which cause bulged end closures.
- 6. The PIP Type 2 initiator will not fire in any of the modes encountered in this series of tests.
- 7. An abnormally large number of the PIP units produced peak pressures outside the range of the lot acceptance specifications for the Apollo Standard Initiator. These unacceptable pressures were not limited to one PIP initiator type.
- 8. Temperature has little or no effect on the peak pressures developed by the PIP initiators fired in a 10 cc closed bomb.
- 9. The use of bridgewire material of greater resistivity (and thus greater diameter) in the Type 1 initiators increased the ignition delay two (2) to three (3) times. This is considered to be due to the longer time required to bring the bridgewire and explosion mix to ignition temperature.

Figure 1 Construction of the Apollo standard initiator

PIP DASH NO.	DEGRADATION	EXAMPLE
1	Tophet A bridgewire	
2	Isomica disk on top of bridgewires	DISK
3	Third bridgewire between B-C	A COLO
4	A-B bridgewire bent toward C-D bridgewire approx. 25% longer than C-D	A COLO
5	No graphite in initiation mix	
6	Initiation charge compaction pressure 5000ps	
7	Header cracked between A-B and C-D bridges	8 0 0
8	Bridgewire A-B only. C-D covered with insulation	
9	No isomica disks	
10	Initiation mix minus binder	-

FIGURE 2 - PIP CONFIGURATIONS

APPENDIX

1100

		14,000	2,000	3,000	4,000	No fire to 30,000 volts	1	ш	1	1	=======================================	
				•		150	No fire	Ε	E	=	=	N/A
passe ann blant i a d that an	23:12 C: 53:1 C: 7:3:1	8.21 pf	8.77pf	5.37pf	5.18pf	5.47pf	8.43pf	8.13pf	8.54pf	8.26pf	7.97pf	8.87pf
		1000 K meg	2 K meg	500 K meg	5 K meg	50 K meg	Веш У 009	700 K meg	1000 K meg	700 K meg	. 1200 K meg	700 K meg
A second	11. TOTAL	AB 1.018 CD 1.024	AB 1.030 CD 1.094	AB 1.065	AB .990 CD 1.068	AB 1.059 CD .981	AB .957 CD 1.002	AB .991	AB 1.087 CD 1.076	AB 1.068 CD 1.065	AB 1.111 CD 1.059	AB 1.049 BC 1.033 CD .980
1	DIMETER COPICE	2.249pf	1.571pf	2.304pf	2.202pf	2,252pf	1.510pf	1.519pf	1.537pf	1.529pf	1.493pf	N/A
	INTERESTICAS RES.	Above 1.5 K meg	-	F	=		=	=	11	F	E	N/A
L	35%	F	35	3,5	77	19	8	25	77	02.	07	13
	ρ. [7] 1-4 1-4 1-4 1-4 1-4 1-4	7	1		1	1	2	8	2	8	3	e

TABLE 1

4. 45

TASSIAND SING TEST GROSS 1

		20,000	No fire to to 30,000 volts	Annual control of the	7,000	18,000	No fire to 30,000 volts	,,000°,	No fire to 30,000 volts	E	14,000	17,000
And the state of t	ELIBORITA DO VOLTAGO - VOLTO	1	M/A	N/A			120	ī	150	120	1	
	P.: 50 C.: C. C.: C.: C.: C.: C.: C.: C.: C.:	8.77pf	9.01pf	7.92pf	5.37pf	8.90pf	8.36pf	3.89pf	8.33pf	5.28pf	7.97pf	8.15pf
	FIX TO CASI FIES.	500 K meg	50 K meg	500 Å meg	1000 K meg	800 К шеg	600 K meg	500 K meg	500 К пед	1000 K meg	500 K meg	800 K meg
A State of the Sta	BRIDGERIES.	AB .954 BC 1.049 CD 1.018	AB 1.033 BC 1.043 CD 1.014	_ ~ ~		AB 1.319 CD 1.014	AB 1.402 CD·1.070	AB1.245 CD 1.037	AB 1.431 CD 1.024	AB 1.309 CD 1.034	AB 1.070 CD 1.030	AB 1.071 CD 1.044
1111	INTERPRIDGE CATAG.	N/A	=	Ξ	F	1.615pf	1.617pf	1.673pf	1.552pf	2.286pf	1.538	1.555pf
	INTELBRIDGE RES.	N/A	±	£	=	Above 1.5 K meg	E	F	1	=	E	E
L	S/N	12	15	16	25		12	40	22	. 90	28	56
	PIP	3	3	E.	٣	7	7	4	7	7	5	. 5

And Chilth

O LINES OF LOTE IN	0 (87.01) (87.01)	No fire to 30,000 volts	26,000	No fire to 30,000 volts	E .	=		=	2,000	2,000	12,000	000,9
	CT ETHYCETEE CTTHI ENGINEERI CTTHY - EDWILOW	150	1	150	110	130	02	140		ı	1	
	CAPAC.	8.35pf	5.46pf	8.53pf	8.63pf	8.45pf	9.02pf	8.86pf	8.8lpf	8.72pf	. 9.13pf	5.38pf
3	FIN 10 0.183	800 K meg	35 K meg	9 ж. 009	200 K meg	500 K meg	500 K meg	200 K meg	700 K meg	200 К meg	200 K meg	250 K meg
	באבהבסבות האבה באה.	AB 1.050 CD 1.031	AB 1.027 CD .960	AB 1.120 CD 1.104	AB 1.028 CD 1.004	AB 1.001 CD 1.042	AB .978 CD 1.048	AB .957 CD 1.030	AB 1.010 CD 1.022	AB 1.011 CD 1.015	AB 1.032 CD 1.006	AB 1.025 CD 1.048
		1.588 pf	2.373pf	1.547pf	1.552pf	1.587pf	1.622pf	1,581pf	1.584pf	1.555pf	2.333pf	2.349pf
	ESTITUTES.	Above 1.5 K meg	E			5	±		=	Ξ	E	
l	17/5	17	17	27	777	22	53	8	33	19.	662	26
	EdXL	5	5	5	9	9	9	9	9	7	-	7

- 3

TICTION DATA

	(Voite)	No fire to 30,000 volts	10,000	No fire to 30,000 volts	27,000	No fire to 30,000 volts	18,000	No fire to 30,000 volts	6,000	2,000	2,000	2,000
	DE ECHTOCIÉS ECTECTIVO VOLTAS — VOITS	130	ı	No fire		No fire		No fire	1	1	1	1
Private Distance was and a properties. And	PIN IO CASE CAPAC.	5.71pf	5.26pf	5.20 pf	8.87pf	9.64pf	8.76pf	6.10pf	8.66pf	5.16pf	, 9.06pf	9.18pf
2 - Andrews - An	RES.	500 K meg	600 К meg	500.K meg	600 К. ше	800 K meg	350 K meg	99ш Х 057	700 K melg	500 K meg	. 600 K meg	1.6 Kmeg
A share a second	DATESCHIA	AB 1.047 CD 1.014	AB 1.024 CD 1.047	AB 1.015	AB 1.089	AB 1.035	AB 1.048	AB 1.030	AB 1.042 CD 1.059	AB 1,000 CD 1,050	AB .963 CD 1.029	AB 1.045 CD 1.131
And the second s		2.316pf	1.515pf	1.527pf	1.510pf	1.600 pf	1.519 pf	1.713 pf .	1.578 pf	1.606 pf	1.604 pf	1.5%pf
. The state of the	ELECTRICAL RES.	Above 1.5 K meg	=	=	E	=	=	E	=	=	=	
	S/N	33	33	13	80	27	32	36	15	25.	50	8
	0. [4 13 [0. 13 [1]	7	2	80	80	æ	8	80	6	6	6	6

ATME GENERALISM AND A STREET GROUP A

	(Yolts)	No fire to 30,000 volts	н .	2,000	2,000	3,000	No fire to 30,000 volts						
	· POLICERIO PO POLICE - VOLIS VOLICE - VOLIS	130	120				140						Company Constitution and Constitution of the Co. At
	FIN TO CASE	8.99 pf	8.71 pf	5.50 pf	. 8.92pf	8.97 pf	5.52 pf			,	•		
River of Administration of the Community	PIN TO OASE RES.	500 K meg	300 К meg	10 K meg	веш и 009	500 K meg	350 K meg		•	1			
	בתובבתו יצרוי	AB 1.069 CD 1.092	AB .988 CD .977	AB .980 CD 1.056	AB 1.065 CD 1.049	AB 1.006 CD 1.057	AB 1.066 CD 1.020	,		-			· · ·
	CAPAG.	1.578 pf	1.565 pf	1.583 pf	1.539 pf	1.572 pf	2,184 pf	•				***************************************	as pro-majorary to pro-
	ETTECTION IN THE RES.	Above 1.5 K meg	E	=		E	Ľ.					And the second s	
1	2/11	13	60	176	23	88	53	<u> </u>					
	PIP IYPE	6	10	10	10	10	10						

	PARAMETERS	SELECTION TO A SELECTION OF THE SELECTIO	708	989	657	703	899	ł	. 1		l		679	399	
	WELL STEIT	TIME TO PEAK PRESSURE (msec)	1.50	1.34	3.29	3.49	1.46	no fire	no fire	no fire	no fire	no fire	1.93	. 1.72	
	S AFTER	INTER- BRIDGE CAPAC.	.516pf	.462pf	.539pf	.407pf	1.297pf	.396pf	1.205pf	.403pf	.534pf	.406pf	N/A	N/A	
	PARAMETERS AF	INTER- BRIDGE RES.	Above 1.5 Kmeg	Þ	E	F .	=	F	=	#	E	F	N/A	N/A	
001		PIN TO CASE CAPAC.	8.74pf	5.Àpf	8.52pf	8.47pf	5.18pf	8.33pf	5.33pf	8.22pf	8.28pf	8.24pf	8.99pf	5.53pf	•
romin regi	AMETERS	PIN TO CASE RES.	800 Kmeg	800 Kmeg	700 Kmeg	600 Kmeg	1000 Ктед	700 Kmeg	gemy 009	800 Kmeg	800 Kmeg	800 Kmeg	200 Kmeg	1000 Kmeg	
	INITIAL PARAMETERS	BRIDGE WIRE RES.	A-B.957 C-D1.047	A-B1.060 C-D1.036	A-B1.022 C-D1.004	A-B .988 C-D1.002	A-B1.012 C-D .976	A-B1.066 C-D1.064	A-B1.039 C-D.994	A-B1.087 C-D1.047	A-B1.065 C-D1.073	A-B .996 C-D1.030	AB1.064 BC1.048 CD1.078	AB1.029 BC .977 CD1.064	
	I	INTER- BRIDGE CAPAC.	1.606pf	2.403pf	1.566pf	1.555pf	2,266pf	1.539pf	2.246pf	1.526pf	1.516pf	1.528pf	N/A	N/A	
	,	INTER- BRIDGE RES.	Above 1.5 Kmeg	=	¥	F	=	Ξ	Ε	£	. =	Ε	N/A	N/A	
•		s/v	12	1.7	22	26	32	11	19	21	22	56	03	90	
		PIP TYPE	1	ı	Н	П	1	2	2	2	2	٠, ٧	т	w	
		SUB	BJ	2	=	E	E	E	=	=	=	· =	=	E	

TABLE 2

TABULATED DATA TEST GROUP B

	_									
		,	H	INITIAL PARANETERS	RANETERS	·	PARAMETERS VIBRAT	METERS AFTER VIBRATICH	FIRITS PAR	PARAYETERS
S/N	z	INTER- BRIDGE RES.	INTER- BRIDGE CAPAC.	BRIDGE WIRE .RES.	FIN TO CASE RES.	PIN TO CASE CAPAC.	INTER- BRIDGE RES.	INTER- BRIDGE CAPAC.	TIME TO PEAZ PRESSURE (msec)	PRESENTE (ps:
Ō	60	N/A	N/A	AB1.010 BC .975 CD1.031	1000 K meg	8.88pî	N/A	N/A	1.73	609
1	10	F.	t:	AB1.055 BC1.106 CD1.000	2 K meg	8.11pf	Ξ	=	1.79	506
	14	=	=	AB1.131 BC1.078 CD1.100	900 Kmeg	8.46pf	ŧ	*	1.29	692
	70	Above 1.5 Kmeg	1.532pf	AB1.220 CD1.025	1800 K meg	8.50pf	Above 1.5 Kmeg	1.2pf	1.44	391
	20	=	1.599pf	AB1.355 CD1.048	1500 K meg	7.92pf	E	.581pf	1.64	279
	80	<u>.</u>	1.617pf	AB1.279 CD1.021	1800 K meg	8.56 pf	E	.580pt	1.66	591
	13	£	1.585pf	AB1.346 CD1.073	1000 K meg	8.42pf	=	. 534pf	1.17	632
	82	E	1.602pf	AB1.276 CD1.000	1000 Kmeg	8.85pf	. 11	.606pf	1.46	816
	02	Above 1.5 Kmeg	1.532pf	AB1.016 CD .898	1200 K meg	8.33pf	п	.325pt	1.62	679
	90	át.	1.529pf	AB1.005	1000 K meg	8.07pf	E	.545p	1.70	728
	13	±	1.547þf	AB1.120 CD1.103	1300 K meg	8.80pf	п	.426pr	1.71	290
	16	Ξ	1.547pf	AB1.104 CD1.037	600 К шев	8.29pf	Ľ	.336pr	2.21	382

									1		
			,	Ι	INITIAL PA	IAL PARAMETERS		PARAYETETS AFTER VIBRATION	S AFTER TOTAL	· FIRING PASAMETERS	Science
SUB	PIP TYPE	S/N	INTER- BRIDGE RES.	INTER- BRIDGE CAPAC.	BRIDGE WIRE 'RES.	PIN TO CASE RES.	PIN TO CASE CAPAC.	INTER- BRIDGE RES.	INTER- BRIDGE CAPAC.	TIME TO PEAT PRESSURE (Esec)	THE STATE OF THE S
BJ	5	19	Above 1.5 Kmeg	1.536pf	AB1.109 CD1.037	1600 K meg	8.55 pf	Above 1.5 Kmeg	.353pf	1.79	757
11	9	11	=	1.581pf	AB1.073 CD1.092	1500 K meg	8.90 pf	=	.493pf	1.32	169
E	9	12	E	1.585pf	AB .993 CD1.037	20 K meg	8.96pf	=	Jd694.	1.69	625
:	9	1.5	£	1.576pf	AB .982 CD1.015	2000 K meg	9.19pf	F	Jd997.	1.56	6773
11	9	16	£	1.603pf	AB1.022 CD1.015	1500 K meg	5.38pf	=	.648pf	1.19	702
F	9	17	I.	1.585pf	AB .992 CD1.025	2000 K meg	8.44pf	=	.484pf	1.46	907
£	۷	10	£	1.570pf	AB1.084 CD1.030	2000 K meg	9.02pf.	E	1.325pf	1.21	789
Ξ.	2	1.1	*	1.566pf	AB1.037 CD1.048	250 K meg	8.51pf	Į.	.533pf	1.60	671
E	7	14	2	1.586pf	AB1.045 CD1.015	300 К пед	9.14pf	=	.523pf	1.36	702
£	. 4	16	E	1.552pf	AB1.033 CD1.000	2000 K meg	8.74pf	=	.457pf	1.47	757
F	6	23	Ε	1.577pf	AB1.049 CD1.015	2000 K meg	8.66pf	4	.508pf	1.52	7.17
#	80	12	=	1.583pf	AB1.027 CD N/A	8	8.78pf	£	.374	1.76	686

PATE SECTION OF THE SECTION OF THE PATE SECTION OF THE S

						1					
		-		⊣	INITIAL PARAMETERS	RAMETERS		PARAMETERS AFTER VIBRATICH	S AFTER TIC:	FIRING PARAMERS	ار سور میں اور
SUBGROUP	PIP TYPE	S/N	INTER- BRIDGE RES.	INTER- RRIDGE CAPAC.	BRIDGE WIRE RES	PIN TO CASE RES.	PIN TO CASE CAPAC.	INTER- BRIDGE RES.	INTER- BRIDGE CAPAC.	TING TO PEAK PRESSURE (msec)	(1.50 m) (1.50 m) (1.50 m)
Bl	∞	18	Above 1.5 Kmeg	1 -	AB -994 CD N/A	2000 K meg	9.02pf	Above 1.5 Kmeg	.370pf	1.50	658
	₩	19	F	1.594pf	AB1.017 CD N/A	2000 K meg	8.23pf	£	.395pf	1.56	599
= -	∞	57		1.626pf	AB1.010 CD N/A	1500 K meg	8.82pf	ŧ	.385pf	1.23	753
E	80	25	E	1.573pf	AB1.044 CD 'N/A	2000 K meg	8.98pf		.376pf	1.21	
=	6	16	=	1.622pf	AB1.098 CD1.078	8	9.06pf	£	.531pf	2.75	595
E	6	21	. 🛎	1.587pf	AB1.053 CD1.100	150 K meg	5.50pf	E	1.246pf	1.70	628
=	6	57	7	2.411pf	AB1.045 CD1.019	.8	5.36pf	=	1.133pf	1.70	608
=	6	30	ŧ	1.598pf	AB1.042 CD .965	8	6.62pf	=	.490pf	1.85	554
E	6	31	E	1.594pf	AB1.025 · CD1.063	2000 K meg	. 8.68 # f	E	Jd297.	2.34	119
ıı	10	19	=	2.399pf	AB1.014 CD1.016		8.49pf	=	1.170pf	1.42	247
.	10	20	F	1.488pf	AB .958 CD .995	500 K meg	5.88pf	-	.323pf	1.32	691
-	10	23	Þ	1.574pf	AB1.067 CD1.097	8	8.90pf	t.	.378pf	1.55	747

TABULATED DATA TEST GROUP B

METERS	PEAK Freedine (isi)	979	902	907	627	087	638	655	1	\$	ŧ	1	1	
FTRING PARAMETERS	TIME TO PEAK PRESSURE (msec)	1.71	71.1	1	1		ı	ı	No fire	.	±.	н	щ.	,
S AFTER TION	INTER- BRIDGE CAPAC.	1.025pf	.354pf	1.130pf	.434pf	1.194pf	1.414pf	.410pf	.343pf	390pf	.353pf	.343pf	.350pf	
PARAMETERS AFTER VIBRATION	INTER- BRIDGE RES.	Above l.5Kmeg	Ε	E	r	F	=	= .	E	Ε	÷	Ε	=	
	PIN TO CASE CAPAC.	3,96pf	jd70*6	8.23pf	5.34pf	8.74pf	8.93pf	8.76pf	8.25pf	5.15pf	8.33pf	8.24pf	7.86pf	
RAMETERS	PIN TO CASE RES.	2000 K meg	1500 K meg	8	8	8	2000 K meg	2000 W meg	2000 Kmeg	1500 K meg	1500 K meg	700 K meg	1500 K meg	
		i			0 3	25	ωд	92 cl	74 20	970	.989	133	710 991	
NITIAL PAI	BRIDGE .WIRE RES.	AB1.048 CD1.114	AB1.019 CD1.091	AB1.002 CD1.017	AB1.050 CD1.014	AB1.012 CD1.023	AB1.023 CD .971	AB .386 CD1.021	AB1.074 CD1.020	AB1.043	# G	AB1.033 CD .969	AB1.017 CD .991	
INITIAL PARAMETERS	INTER- BRIDGE BRIDGE WIRE CAPAC. RES.	1.546pf AB1.048	1.532pf ABl.019	1.580pf AB1.002	1.572pf CD1.01	2.309pf ABL.01	1.572pf AB1.02	2.242pf AB .36	1.536pf ABL.0	2.092pf ABL.(1	1.524pf AB1.C	1.530pf ABL.(
INITIAL PAI		_					1			1	4 6			
INITIAL PAI	INTER- BRIDGE CAPAC.	1.546pf	1.532pf	1.580pf	1.572pf	2.309pf	1.572pf	2.242pf	1.536pf	2.092pf	1.529pf AB	1.524pf	1.530pf	
INITIAL PA	INTER- INTER- BRIDGE BRIDGE RES. CAPAC.	Above 1.5Kmeg	" 1.532pf	" 1.580pf	" 1.572pf	" 2,309pf	" 1.572pf	" 2.242pf	" 1.536pf	" 2.092pf	" 1.529pf AB	" 1.524pf	" 1.530pf	and the same of th
. INITIAL PA	S/N BRIDGE BRIDGE RES. CAPAC.	22 Above 1.546pf	27 " 1.532pf	01 " 1.580pf	06 " 1.572pf	08 " 2.309pf	13 " 1.572pf	33 " 2.242pf	13 " 1.536pf	. 2.092pf	23 " 1.529pf AB	27 " 1.524pf	28 " 1.530pf	

										•				
	Siz	Edizone Fedizone	323	558	563	63.5	582	579	622	. 624	765	546	571	28
	FIRING PER	TIME TO PEAN PRESSURE (msec)	2.70	3.09	2.73	2.10	2.32	2.34	2.00	1.89	1.97	1.87	1.93	2.16
	S AFTER	INTER- BRIDGE CAPAC.	.514pf	.516pf	.466pf	Above 1.237pf	.387pf	.412pf	1.154pf	1,125pf	.526pf	1.231pf	1.337pf	,466pf
•	PARAMETES AF	INTER- BRIDGE RES.	Above l.5Kmeg	*	750meg	Above 1.5 Kme	E.	E.	Ε.	=	ŧ	Į.	Ŧ	=
JUP B		PIN TO CASE CAPAC.	8.61pf	8.22pf	8.61 pf	5 ₊ 30pf	8.45pf	8.40pf	5.94pf	5.59pf	- 8.54pf	5.62pf	5.57pf	5.52pf
TEST GROUP B	IAL PARAMETERS	PIN TO CASE RES.	1000 K meg	2000 K meg	2000 K meg	1500 K meg	2000 К шеg	2000 К шеg	2000 rmeg	2000 K meg	1500 K meg	1000 К. meg	1500 K meg	2000 K meg
	INITIAL PAR	BRIDGE WIRE RES.	AB1.069	AB1.025 CD1.094	AB1.092 CD1.089	AB1.102 CD1.108	AB1.039 CD1.138	AB1.025 CD1.040	AB1.014 CD .996	AB1.061 CD1.028	AB1.088 CD1.107	AB1.070 CD1.060	AB1.068 CD .991	AB1.026 CD1.024
	ពី	INTER- BRIDGE CAPAC.	1.595pf	1.582pf	1.624pf	2.443pf	2.296pf	1.632pf	2.400pf	2.252pf	2,200pf	2.234pf	2.268pf	1.463pf
	9	INTER- BRIDGE RES.	Above 1.5Kmeg	E	=	t -	<u>=</u>	•=	E	E	Ε	E	=	=
	<u> </u>	S/S	60	20	23	63	90	19	26	32	70	60	15	88
		PIP TYPE	5	5	5	9	9	9	9	9	7	L:	7	7
		SUBGROUP	B2	H	E	11	11	#	11	=	5	Ξ	=	=

下 一

		(r)				!								
	PARAMETERS	(rsd) EM.SSINE Midd	665	U.7	559	721	779	589	581	586	. 620	542	610	665
	FIRING PAR	TING TO PEAN FRESSURE (msec)	2.03	1.93	. 1.95	2.09	1.95	1.87	2.46	1.99	5.09	2.16	1.8	2.00
	S AFTER TICM	INTER- BRIDGE CAPAC.	Jd675.	.428pf	1.116pf	.364pf	.392pf	.976pf	.435pf	1.310pf	.488pf	Jd627.	.461pf	.355pf
	PARAMETERS AF	INTER- BRIDGE RES.	Above 1.5 K meg	Ħ	=	F	E	250 meg	Above 1.5 K meg	=	*	=	=	E
+		PIN TO CASE CAPAC.	5.70pf	9.28pf	8.46pf	8.72pf	9.28pf	5.46pf	8.89pf	9.18pf	3.69pf	8.72 pf	5.52pf	8.98pf
	24METERS	PIN TO CASE RES.	1500 K meg	1800 K meg	2000 K meg	1500 K meg	300 K meg	80 meg	10 K meg	500 K meg	. 1500 K meg	Веш. И 0002	2000 K meg	800 K meg
	INITIAL PARAMETERS	BRIDGE WIRE RES.	AB1.019 CD1,026	AB1.060 CD -	AB .988 CD -	AB .979 CD -	AB1.049 CD -	AB1 .040 CD -	AB1.127 CD1.037	AB1.105	AB1.084 CD1.062	AB1.056 CD1.079	AB1.026 CD1.042	AB1.014 CD1.025
	F	INTER- BRIDGE CAPAC.	1.522pf	1.658pf	1.470pf	1.520pf	1.559pf	2.062pf	1.531pf	2.283pf	1.535pf	1.524pf	1.521pf	1.471pf
	- The state of the	INTER- BRIDGE RES.	Above 1.5 K meg		Ē	=	=	E	F	-	=	=	E	= .
		S/N	34	02	11	3.7	23	34	28	70	03	10	10	70
		PIP TYPE	7	8	40	∞	60	60	6	6	6	6	6	10
		SUBGROUP	B2	=	11	E	=	=	11	11	5	#	-	Ξ

ā

	,	i :	ı :	ı i	i :	1	 			i			
•	METERS	FELK EFISSIFE (Psil	769	875	865	. 077			•	·			•
	FIRITG PARAMETERS	TIME TO PEAK PRESSURE (msec)	2.09	2.04	2.02	2.20						,	
	S AFTER TION	INTEP- BRIDGE CAPAC.	.313pf	.290pf	.325pf	.308pf						·	
	PARAMETERS AFTER VIBRATION	INTER- BRIDGE RES.	Above 1.5K meg	E	2	*							
2 100		PIN TO CASE CAPAC.	8.36pf	9.12pf	9.36pf	8,62pf			•	١	•		
והשנה וכיון	RAMETERS	PIN TO CASE RES.	2000 k meg	2000 K meg	8	15 K meg		•			•		
	INITIAL PARAMETERS	BRIDGE WIRE RES.	AB1.034 CD1.046	AB1.020 CD1.036	AB .963 CD .990	AB1.016 CD1.070	•	,					
	Г	INTER- BRIDGE CAPAC.	1.427pf	1.454pf	J4967°L	1.444pf							
	,	INTER- BRIDGE RES.	Above i.5Kmeg	1	u	ŧ							
		N√S	05	90	H	12							
		PIP TYPE	10	10	10	10	1			•			
		SUB GROUP	B2	=	=	F							

1 1		1						I	.				1
METERS	EENK EENSSEAA (ISI	563	751	999	581	<i>1</i> 79	no fire	£	u	E	Ŧ	2795	663
FIRING PARAMETERS	TIME TO PEKK PRESCURE* (msec!	6.43	7.58	12.36	8.07	14.86	no fire	£-	F.		н	2.44	2.40
FOLLOWING CYCLING	INTERBRIDGE CAPAG.	322 pf	.372 pf	.372 pf	Jd 0/6.	.357 pf	.346 pf	.307 pf	.330 pf	.304 pf	.926 pf	N/A	=
PARAMETERS FOLLOWING TEMPERATURE CYCLING	INTERBRIDGE RES.	Above 1.5 K Meg	н	ŧ	=	ŧ.	11	ш ,	=	Ľ	=	. N/A	E
iesi uncur c	PIN TO CASE CAPAG.	8.96 pf	8.34 pf	8.87 pf	8.80 pf	9.33 pf	8.37 pf	39 pt	Jd 76.7	8.34 pf	8.18 pf	9.26 pf	8.90 pf
	PIN TO CASE RES.	3 K meg	200 K meg	8	8	1500 K meg	8	1000 K meg	8	500 K meg	8	8	,8
INITIAL PARAMETERS	BRIDGE WIRE RES.	AB1.050 CD1.034	AB .971 CD1.027	AB .975	AB1.053 CD 1.054	AB1.022 CD1.042	AB1.117 CD1.025	AB .985 CD .985	AB1.000 CD1.008	AB1.006 CD1.042	AB .988 CD1.057	AB1.023 BC1.062 CD1.024	AB1.022 BC1.056 CD1.000
	INTER- BRIDGE CAPAC.	1.497 pf	1.511 pf	J.483 pf	2.298 pf	1.509 pf	J.474 pf	1.446 pf	J.446 pf	1.440 pf	1.465 pf	N/A	=
3	INTER- BRIDGE RES.	Above 1.5 Kmg	=	F	Ε	z	=	F	E	E	E	E .	=
	s/s	20	25	8	27	28	12	90	30	88	8	10	22
	PI P TY PE	H	П	ч	г	н	7	8	R	7	۲	3	3

TABLE 3

	TEPS	155 (155) 155 (155)	769	579	576	64.2	637	637	, 682	632	518	418	576	518
	FIRING PARAMETERS	TIMA TO PRAK PRESSURE* P	5.44	2.45	2.18	2.27	2.12	1.82	1.83	2.00	2.33	3.18	2.93	2.12
	FOLLOWING CYCLING	INTERBRIDGE CAPAG.	N/A	г	=	1,161 pf	.362 pf	.373 pf	.398 pf	1.00 pf	já 626.	.397 pf	.378 pf	1.038 pf
-	PARAMETERS FOLLOWING TEAPERATURE CYCLING	INTERBRIDGE RES.	N/A	F	н	Above 1.5 K meg	E	F	=	Ξ	=	F	ε	=
TEST GROUP C		PIN TO CASE CAPAC.	8.62 pf	8.36 pf	5.34 pf	5.40 pf	8.01 pf	7.83 pf	. 6.06 pf	8.08 pf	8.60 pf	8.78 pf	8.51 pf	8.40 pf
	AMETERS	PIN TO CASE . RES.	8	1000 K meg	1800 K meg	8	8	8	1500 K meg	8	8.	200 K meg	15 K meg	130 K meg
	INITIAL PARAMETERS	BRIDGE WIRE RES.	AB 1.034 BC 1.084	AB 1.029 BC 1.091 CD 1.002	AB 1.060 BC 1.075 CD 1.071	AB 1.212 CD 1.019	AB 1.272 CD 1.014	AB 1.343 CD 1.118	AB 1.251 CD 1.061	AB 1.272 CD 1.108	AB 1.009 CD 1.000	AB 1.078 CD 1.105	AB 1.020 CD 1.002	AB 1.018 CD 1.009
3	NI	INTER- BRIDGE CAPAC.	N/A	=	П	meg 2.335 pf	Jd 667.1	1.497 pf	1.543 pf	2.193	1.491 pf	1.596 pf	1.511 pf	1.460 pf
		INTER- BRIDGE RES.	N/A	F	ŧ	Above 1.5 K me	=	#	11	E	Ξ	=	E	Ξ.
	•	:,\S	28	17	80	92	14	17	10	60	25	10	18	31
		PIP TYPE	6	6	8	7	7	7	7	7	٦,	5	5	5

TEST GROUP C

1		1		1		-					.1	1	1	
SIEES	1200) 1200)	575	637	809	561	592	603	503	595	672	919	700	597	
FIRING PARACETERS	TIME TO PEAK PRESSURE* (meso!	3.10	2.69	2.12	2.19	2.21	2.13	2.18	2.30	2.63	2.08	2.24	2.08	
FOLLOWING CYCLING	INTERBRIDGE CAPAC.	.376 pf	.988 pf	.360 pf	.392 pf	.353 pf	.354 pf	1.006 pf	.97 pf	.399 pf.	1.002 pf	1.044 pf	. Jd 678.	
PAKAMETERS FOLLOWING TEMPERATURE CYCLING	INTERBRIDGE RES.	Above 1.5 K meg	Ε	£	Ξ.	£	#	:	E.	=	=	=	Ľ	
TEST GROUP C	PIN TO CASE CAPAC.	8.48 pf	5.57 pf	8.76 pf	8.53 pf	8.94 pf	8.39 pf	· 8.55pf	8.30 pf	3g 16.8	ld 86.8.	5.27 pf	5.11 pf	
	PIN TO CASE RES.	Веш X 07	8	8	1500 K meg	8	8	.8	8	8	8	8	. 8	
INITIAL PARAMETERS	BRIDGE WIRE RES.	AB 1.024 pfCD 1.139	AB .950 CD 1.032	AB 1.042 CD 1.089	AB 1.012 CD .997	AB 1.008 CD 1.037	AB 1.028 CD 1.018	AB 1.027 CD 1.095	AB .946 CD 1.026	AB 1.007 CD 1.030	AB 1.025 PCD 1.018	AB .994 CD 1.014	p. AB 1.090	
NI	INTER- BRIDGE CAPAC.	1.490	2.215 pf	1.530pf	1.563pf	1,531pf	1.515pf	2.203pf	2.192pf	1.502pf	2.231 p	2.230pf	2.197 p	
	INTER- BRIDGE RES.	Above 1.5 K meg	=	=	=	×	11	Ε	±	=	=	1	E	
	S/N	03	27	78	25	50	30	20	22	25	27	32	07	
	PIP	5	9	9	9	9	9	7	7	7	7	7	8	
	1	1	I	1	j	i	1		ı	1	t	•		•

TEST GROUP C

1		l		į	-	l	ł	ı	ı	1		ı	1	į 1	ı
	PARAMETERS	ALECTOR CONTRACT CONT	579	621	655	÷09	539	597	. 553	582	579	*	L#77 .	529	
	FIRING PARA	TIME TO PEEK PRESSUREY (Seec	3.31	1.80	2.51-	2.09	2.39	2.51	2.32	2.24	2.31	*	1.83	2.06	
	FOLLOWING	IMTERBRIDGE CAPAC.	.303 pf	.311 pf	.331 pf	.329pf	.356pf	.386pf	1.080 pf	Jd 907.	jď 7⁄66°	1.10 pf	.363 pf	.368 pf	
	PAKAMETERS FOLLOWING TEMPERATURE CYCLING	INTERBRIDGE RES.	Above 1.5 K meg	И	Ľ	E	 E-	=	=	Ξ		=	=	E	
TEST GROUP C		PIN TO CASE CAPAC.	8.95 pf	8.88 pf	5.48pf	9.00 pf	8.66 pf	5.28 pf	5.34 pf	8.70 pf	5.48 pf	8.94 pf	9.12 pf	8.63 pf	
	Parameters	PIN TO CASE RES.	.8	8	8	300 K meg	8	700 K meg	8.	2000 K meg	1000 K meg	4 K meg	8	Вешу 005.	
	INITIAL PAR	BRIDGE WIRE PES.	: AB.977	AB1.108	AB .963	AB1.070	AB1.056 CD1.039	AB1.011 CD1.030	AB1.002 CD1.057	AB1.137 CD1.059	ABI.071 CDI.046	AB1.023 CD1.011	AB1.069 CD1.042	AB1.043 CD1.022	
	· IN	INTER- BRIDGE CAPAC.	1.543 pf	1.528pf	2.243pf	.1.597pf	1.513pf	2.34opf	2.310pf	1.569pf	2.232pf	2.282pf	1.538pf	1.505pf	
		INTER- BRIDGE RES.	Above 1.5 Kmeg	E	E	=	E	11	E	=	≣	E	=	F	
•		S/N	10	70	21	31	12	14	22	27	32	80	13	15	
		PIP TYPE	∞	₩	€0	80	6	6	6	6	6	10	10	10	

*Cut open for inspection after temperature cycling.

	,	1 1		· t	ī	i	1 1		i 1	1 - 1	ı	ı ,		
	Parletens	MARY PESSON (ESC.)	521	629					-					
	FIRING PARL	TIMA TC PEKK PRESSURE* (TEREC)	2.00	2.35	•		,							
	FOLLOWING	INTERBRIDGE CAPAC.	.383 pf	.296 pf	,								÷	
-	PARAKETERS FOLLOWING TEXPERATURE CYCLING	INTERBRIDGE RES.	Above 1.5 K meg								,			
TEST GROUP C		PIN TO CASE CAPAC.	9.38 pf	8.23 pf					•		1	•		
	AMETERS	PIN TO CASE RES.	8	8										
	INITIAL PARAMETERS	BRIDGE WIRE RES.	AB 1.010 CD 1.103	AB 1.060 CD 1.018	•		-							
	Ä	INTER- BRIDGE CAPAC.	1.649 pf	1.505 pf										
		INTER- BRIDGE PES.	75Kmeg	Above 1.5 Kmeg										
		s/a	33	32										
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	10	10										
	-	ı	i	I		1		.1	1	1	ı	1	†	•